Multi-Step Agent (0-10 Scores)
5-step agent pipeline producing numeric 0-10 scores. Same multi-step architecture as the categorical agent but outputs calibrated numeric predictions instead of categories.
Overview
Pipeline Visualization
Step 1: Extract Facts
LLM prompt execution
Step 2: Web Search
Automated web search (no LLM call)
Step 3: Clinical Assessment
LLM prompt execution
Step 4: Market Dynamics
LLM prompt execution
Step 5: Final Score
LLM prompt execution
Prompt Details
Step 1: Extract Facts
Expected Output Format
This prompt expects a JSON response. See the user prompt template for the exact structure.
Step 2: Web Search
AutomatedStep 3: Clinical Assessment
Expected Output Format
This prompt expects a JSON response. See the user prompt template for the exact structure.
Step 4: Market Dynamics
Expected Output Format
This prompt expects a JSON response. See the user prompt template for the exact structure.
Step 5: Final Score
Expected Output Format
This prompt expects a JSON response. See the user prompt template for the exact structure.
Template Variables Reference
These variables are dynamically replaced with actual values when the strategy is executed:
{cat_type}Catalyst event type (e.g., FDA approval, trial results){company}Company name{drug}Drug or therapy name{indication}Medical indication/disease being treated{phase}Clinical trial phase (1, 2, 3, etc.){pr_text}Full press release text{step1_result}Output from Step 1 prompt{step2_result}Output from Step 2 (web search){step3_result}Output from Step 3 prompt{step4_result}Output from Step 4 prompt{ticker}Company stock ticker symbol{{
"clinical_significance": "breakthrough/meaningful/incremental/neutral/disappointing/failure",
"vs_standard_of_care": "<comparison>",
"approvability": "likely/uncertain/unlikely",
"reasoning": "<2 sentences>"
}Custom variable{{
"priced_in": "fully/partially/not/negative",
"expectations": "exceeded/met/missed",
"asset_importance": "lead/key/minor",
"reasoning": "<2 sentences>"
}Custom variable{{
"primary_endpoint_met": true/false/null,
"p_value": "<value or null>",
"effect_size": "<key metric>",
"safety_signals": ["list"],
"regulatory_status": "<status or null>",
"trial_phase": "<phase>",
"key_quotes": ["1-2 quotes"]
}Custom variable{{
"score": <0-10>,
"confidence": <0-100>,
"reasoning": "<2-3 sentences>",
"key_factors": ["factor1", "factor2"]
}Custom variable